Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38640794

RESUMO

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.

2.
Methods Enzymol ; 696: 251-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658083

RESUMO

Some species of the genus Cunninghamella (C. elegans, C. echinulata and C. blaskesleeana) produce the same phase I and phase II metabolites when incubated with xenobiotics as mammals, and thus are considered microbial models of mammalian metabolism. This had made these fungi attractive for metabolism studies with drugs, pesticides and environmental pollutants. As a substantial proportion of pharmaceuticals and agrochemicals are fluorinated, their biotransformation has been studied in Cunninghamella fungi and C. elegans in particular. This article details the methods employed for cultivating the fungi in planktonic and biofilm cultures, and extraction and analysis of fluorinated metabolites. Furthermore, protocols for the heterologous expression of Cunninghamella cytochromes P450 (CYPs), which are the enzymes associated with phase I metabolism, are described.


Assuntos
Biotransformação , Cunninghamella , Sistema Enzimático do Citocromo P-450 , Xenobióticos , Cunninghamella/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Halogenação , Biofilmes , Preparações Farmacêuticas/metabolismo , Animais
3.
Food Res Int ; 184: 114258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609236

RESUMO

The study aimed to determine the chemical structures of octadecatrienoic acid isomers produced by probiotics through the bioconversion of α-linolenic acid and to assess their antioxidant capacities. The chemical structures were identified using nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), while the antioxidant capacities were evaluated in vitro and in cellular. The NMR signals obtained allowed for definitive characterization, with the main ion fragments detected being m/z 58.0062, 59.0140, 71.0141, 113.0616, 127.0777, and 181.5833. Compounds at concentrations below 40 µM maintained the antioxidant capacity of HepG2 cells by protecting endogenous antioxidative enzymes and mitochondrial membrane potential. However, doses higher than 40 µM increase oxidative damage and mitochondrial dysfunction. These results confirmed the structure of the probiotic-derived compound as trans9, trans11, cis15-conjugated linolenic acid. Additionally, appropriate doses of CLNA can alleviate oxidative stress induced by AAPH, while high doses aggravate cellular damage. These findings provide foundational information for the further exploration of probiotic-derived edible lipids.


Assuntos
Antioxidantes , Lomustina/análogos & derivados , Probióticos , Antioxidantes/farmacologia , Ácido alfa-Linolênico , Estresse Oxidativo
4.
Biomol NMR Assign ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642265

RESUMO

Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the N-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA's depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present de novo sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.

5.
Anal Chim Acta ; 1298: 342401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462340

RESUMO

BACKGROUND: High-resolution matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance (NMR) spectroscopy are powerful tools to identify unknown psychoactive substances. However, in complex matrices, trace levels of unknown substances usually require additional fractionation and concentration. Specialized liquid chromatography systems are necessary for both techniques. The small flow rate of nano LC, typically paired with MALDI-TOF MS, often results in prolonged fractionation times. Conversely, the larger flow rate of semi-preparative LC, used for NMR analysis, can be time-consuming and labor-intensive when concentrating samples. To address these issues, we developed an integrated automatic system that integrated to regular LC. RESULT: Automatic spot collector (ASC) and automatic fraction collector (AFC) were present in this study. The ASC utilized in-line matrix mixing, full-contact spotting and real time heating (50 °C), achieving great capacity of 5 µL droplet on MALDI plate, high recovery (76-116%) and rapid evaporation in 2 min. The analytes were concentrated 4-8 times, forming even crystallization, reaching the detection limit at the concentration of 50 µg L-1 for 12 psychoactive substances in urine. The AFC utilizes flexible tubing which flash-tapped the microtube's upper rim (3 mm depth) instead of reaching the bottom. This method prevents sample loss and minimizes the robotic arm's movement, providing a high fractionating speed at 6 s 12 psychoactive compounds were fractionated in a single round analysis (recovery: 81%-114%). Methamphetamine and nitrazepam obtained from drug-laced coffee samples were successful analyzed with photodiode array (PDA) after one AFC round and NMR after five rounds. SIGNIFICANCE: The ASC device employed real-time heating, in-line matrix mixing, and full-contact spotting to facilitate the samples spotting onto the MALDI target plate, thereby enhancing detection sensitivity in low-concentration and complex samples. The AFC device utilized the novel flash-tapping method to achieve rapid fractionation and high recovery rate. These devices were assembled using commercially available components, making them affordable (400 USD) for most laboratories while still meeting the required performance for advanced commercialized systems.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida/métodos , Cristalização , Espectroscopia de Ressonância Magnética
6.
Adv Healthc Mater ; : e2303666, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431774

RESUMO

Carbene-based bioadhesives have favourable attributes for tissue adhesion, including non-specific bonding to wet and dry tissues, but suffer from relatively weak fracture strength after photocuring. Light irradiation of carbene-precursor (diazirine) also creates inert side products that are absent under thermal activation. Herein, a dual activation method combines light irradiation at elevated temperatures for the evaluation of diazirine depletion and effects on cohesive properties. A customized photo/thermal-rheometer evaluates viscoelastic properties, correlated to the kinetics of carbene:diazoalkane ratios via 19 F NMR). The latter exploits the sensitive -CF3 functional group to determine joule-based light/temperature kinetics on trifluoroaryl diazirine consumption. The combination of heat and photoactivation produced bioadhesives that are 3× tougher compared to control. Dual thermal/light irradiation may be a strategy to improve viscoelastic dissipation and toughness of photo-activated adhesive resins.

7.
Protein Sci ; 33(4): e4950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511503

RESUMO

Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the ß subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 µM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.


Assuntos
Aminoácidos , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Mamíferos
8.
ACS Nano ; 18(13): 9746-9764, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38514237

RESUMO

Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.


Assuntos
Vacina BNT162 , Nanopartículas , Humanos , Lipídeos/química , RNA Mensageiro/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38546526

RESUMO

CONTEXT: Patients with adrenal hormone excess demonstrate increased cardiovascular risk and mortality. OBJECTIVE: We aimed to determine the impact of adrenal disorders on the inflammation marker GlycA, total branched-chain amino acids (BCAA), ketone bodies and the gut microbiome-derived metabolites trimethylamine N-oxide (TMAO) and betaine. METHODS: We conducted a single-center cross-sectional study of patients with nonfunctioning adenomas (NFA), mild autonomous cortisol secretion (MACS), primary aldosteronism (PA), Cushing syndrome (CS), pheochromocytoma/paragangliomas (PPGL), other benign or malignant adrenal masses, and adrenocortical carcinoma (ACC) between January 2015 and July 2022 (n=802). Referent subjects included participants of the PREVEND (Prevention of Renal and Vascular End-stage Disease) study (n=5241). GlycA, BCAA, ketone bodies, TMAO, and betaine were measured using nuclear magnetic resonance spectroscopy. Multivariable logistic analyses were adjusted for age, sex, BMI, smoking, hypertension, diabetes mellitus and statin therapy. RESULTS: In age-and sex-adjusted comparison to referent subjects, increased GlycA was noted in all patient categories, increased BCAA in NFA, MACS, CS, PA and ACC, increased TMAO in patients with other malignant adrenal masses, increased betaine in NFA and MACS, and increased ketone bodies in NFA, CS and ACC. Essentially similar findings were observed in fully adjusted analysis and after exclusion of subjects with diabetes and cardiovascular disease. CONCLUSION: Patients with functioning and non-functioning adrenal masses demonstrated increased GlycA and BCAA, biomarkers associated with adverse cardiometabolic disorders and mortality. Patients with NFA demonstrated an adverse metabolic profile similar to patients with MACS and CS.

10.
Pediatr Surg Int ; 40(1): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512700

RESUMO

PURPOSE: This study aims to compare the fecal metabolome in post pull-through HD with and without HAEC patients and healthy young children using nuclear magnetic resonance (NMR) spectroscopy. METHODS: Fresh fecal samples were collected from children under 5 years of age in both post-pull-through HD patients and healthy Thai children. A total of 20 fecal samples were then analyzed using NMR spectroscopy. RESULTS: Thirty-four metabolites identified among HD and healthy children younger than 5 years were compared. HD samples demonstrated a significant decrease in acetoin, phenylacetylglutamine, and N-acetylornithine (corrected p value = 0.01, 0.04, and 0.004, respectively). Succinate and xylose significantly decreased in HD with HAEC group compared to HD without HAEC group (corrected p value = 0.04 and 0.02, respectively). Moreover, glutamine and glutamate metabolism, and alanine, aspartate, and glutamate metabolism were the significant pathways involved, with pathway impact 0.42 and 0.50, respectively (corrected p value = 0.02 and 0.04, respectively). CONCLUSION: Differences in class, quantity, and metabolism of protein and other metabolites in young children with HD after pull-through operation were identified. Most of the associated metabolic pathways were correlated with the amino acids metabolism, which is required to maintain intestinal integrity and function.


Assuntos
Enterocolite , Doença de Hirschsprung , Criança , Humanos , Lactente , Pré-Escolar , Doença de Hirschsprung/cirurgia , Enterocolite/cirurgia , Intestinos , Fezes/química , Glutamatos/análise , Complicações Pós-Operatórias , Estudos Retrospectivos
11.
Carbohydr Polym ; 333: 121962, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494219

RESUMO

Ulva are hardy green seaweeds that contain the sulfated polysaccharide ulvan and grow in two distinct morphologies: foliose and tubular. The authors hypothesise that ulvan from tubular species are more structurally complex than ulvans from foliose species. Herein, using standardised methods, the glycosyl linkage positions and sulfate ester substitutions of constituent monosaccharides of ulvan isolated from foliose (U. lacinulata and U. stenophylloides) and tubular (U. prolifera and U. ralfsii) species of Ulva were investigated. Comparison of native ulvans with 80 and 100 °C desulfated counterparts indicated that 4-linked rhamnose is predominantly 3-O-sulfated in all four ulvans. Ulvans from the foliose species predominantly contained →3,4)-Rhap-(1→, →4)-GlcAp-(1→ and →4)-IdoAp-(1→, collectively accounting for 67 to 81 mol% of the total linkages. In contrast, these same linkages in ulvans from the tubular species only collectively accounted for 29 to 36 mol%. Instead, ulvan from tubular species contained a combination of →2,3,4)-Rhap-(1→, terminal Rhap-(1→, →4)-GlcAp-(1→, →4)-Xylp-(1→, and/or →4)-Galp-(1→ in high proportions; some of the latter three residues were also likely O-2 sulfated. The results presented here suggest that ulvan from foliose species are predominantly unbranched polysaccharides composed of repeat disaccharides while ulvans from tubular species contain a greater diversity of branch and sulfate substitution locations.


Assuntos
Alga Marinha , Ulva , Ulva/química , Polissacarídeos/química , Sulfatos/química
12.
J Pharm Biomed Anal ; 242: 116010, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364345

RESUMO

In this study, an alternative method to compendial analytical procedures with enhanced detection and separation capabilities was validated for the quality assessment of glutathione (GSH) drug substance. The related impurities A, B, C, and D present in GSH drug substance were characterized using a one-dimension proton nuclear magnetic resonance (1D 1H NMR) method on a 600 MHz spectrometer equipped with a liquid nitrogen cryoprobe. Two sample preparations at different pH were optimized to ensure the unambiguous identification of different impurities in the GSH samples. Specifically, impurities A and C in a GSH sample can be tested at pH 3.0, while pH 7.4 is more suitable for testing impurities B and D. The quantitative NMR (qNMR) method was validated following International Council for Harmonisation (ICH) guidelines. The limit of detection (LOD) was less than 0.1% wt for an individual impurity, and the limit of quantitation (LOQ) ranged from 0.14 to 0.24% wt, using about 14 min experimental time per spectrum. Following validation, the qNMR method was applied to assess different commercial GSH bulk substance samples, an in-house compounded GSH drug product, and a GSH dietary supplement product. The method was also applied to monitor GSH degradation (hydrolysis and oxidation) over time to provide quantitative information on GSH degradation and stability. The results suggest that the qNMR method can serve as a highly specific and efficient orthogonal tool for assessing the quality of GSH pharmaceuticals, providing both qualitative and quantitative information on GSH and its related impurities A-D.


Assuntos
Glutationa , Imageamento por Ressonância Magnética , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas , Contaminação de Medicamentos , Reprodutibilidade dos Testes
13.
Protein Sci ; 33(3): e4910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358125

RESUMO

Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.


Assuntos
Aminoácidos , Proteínas , Animais , Humanos , Aminoácidos/química , Proteínas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Flúor/química , Mamíferos
14.
Magn Reson Chem ; 62(6): 452-462, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237933

RESUMO

Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.


Assuntos
Subtilisinas , Hidrólise , Subtilisinas/metabolismo , Subtilisinas/química , Difusão , Animais , Espectroscopia de Ressonância Magnética/métodos , Gadiformes/metabolismo
15.
J Endocrinol Invest ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38182920

RESUMO

AIMS: To assess if advanced characterization of serum glycoprotein and lipoprotein profile, measured by proton nuclear magnetic resonance spectroscopy (1H-NMRS) improves a predictive clinical model of cardioautonomic neuropathy (CAN) in subjects with type 1 diabetes (T1D). METHODS: Cross-sectional study (ClinicalTrials.gov Identifier: NCT04950634). CAN was diagnosed using Ewing's score. Advanced characterization of macromolecular complexes including glycoprotein and lipoprotein profiles in serum samples were measured by 1H-NMRS. We addressed the relationships between these biomarkers and CAN using correlation and regression analyses. Diagnostic performance was assessed by analyzing their areas under the receiver operating characteristic curves (AUCROC). RESULTS: Three hundred and twenty-three patients were included (46% female, mean age and duration of diabetes of 41 ± 13 years and 19 ± 11 years, respectively). The overall prevalence of CAN was 28% [95% confidence interval (95%CI): 23; 33]. Glycoproteins such as N-acetylglucosamine/galactosamine and sialic acid showed strong correlations with inflammatory markers such as high-sensitive C-reactive protein, fibrinogen, IL-10, IL-6, and TNF-α. On the contrary, we did not find any association between the former and CAN. A stepwise binary logistic regression model (R2 = 0.078; P = 0.003) retained intermediate-density lipoprotein-triglycerides (IDL-TG) [ß:0.082 (95%CI: 0.005; 0.160); P = 0.039], high-density lipoprotein-triglycerides (HDL-TGL)/HDL-Cholesterol [ß:3.633 (95%CI: 0.873; 6.394); P = 0.010], and large-HDL particle number [ß: 3.710 (95%CI: 0.677; 6.744); P = 0.001] as statistically significant determinants of CAN. Adding these lipoprotein particles to a clinical prediction model of CAN that included age, duration of diabetes, and A1c enhanced its diagnostic performance, improving AUCROC from 0.546 (95%CI: 0.404; 0.688) to 0.728 (95%CI: 0.616; 0.840). CONCLUSIONS: When added to clinical variables, 1H-NMRS-lipoprotein particle profiles may be helpful to identify those patients with T1D at risk of CAN.

16.
Biochim Biophys Acta Biomembr ; 1866(3): 184289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278504

RESUMO

The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.


Assuntos
Hormônios Peptídicos , Humanos , Apelina/metabolismo , Ligantes , Células HEK293 , Hormônios Peptídicos/química , Catálise
17.
Eur J Pharm Sci ; 192: 106640, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979888

RESUMO

The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 % and 64.9 % for enantiomerically pure R- and S-ketamine, respectively, and 66.5 % for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pKaff values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate.


Assuntos
Ketamina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Albumina Sérica/metabolismo , Estereoisomerismo , Ligação Proteica
18.
Chemistry ; 30(4): e202301846, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37721802

RESUMO

The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronic c i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronic t r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.

19.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159565

RESUMO

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Assuntos
Domínio Catalítico , Fator de Iniciação 2 em Eucariotos , Proteína Fosfatase 1 , Humanos , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
20.
J Agric Food Chem ; 72(1): 894-903, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112332

RESUMO

Untargeted nuclear magnetic resonance (NMR) metabolomics was used to evaluate compositional changes during yogurt fermentation upon lupin enrichment compared to traditional conditions. Lupin significantly changed the sample metabolic profile and its time course dynamics, seemingly delaying microbial action. The levels of organic and amino acids were significantly altered, along with those of some sugars, nucleotides, and choline compounds. Lupin seemed to favor acetate and formate synthesis, compared to that of citrate and fumarate; a higher formate levels may suggest increased levels of Streptococcus thermophilus action, compared toLactobacillus bulgaricus. Lupin-yogurt was poorer in hippurate, lactose (and hence lactate), galactose, glucose-1-phosphate, and galactose-1-phosphate, containing higher orotate levels (possibly related to increased uridine derivatives), among other differences. Trigonelline was confirmed as a lupin marker, possibly together with glutamate and histidine. Other metabolite trajectories remained unchanged upon lupin addition, unveiling unaffected underlying processes. These results demonstrate the usefulness of untargeted NMR metabolomics to understand/develop new foodstuffs and their production processes, highlighting the identity of a variety of bioactive metabolites with importance for human health.


Assuntos
Açúcares , Iogurte , Humanos , Iogurte/análise , Fermentação , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Formiatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...